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Abstract

Biases enable systems to make decisions in realms where all legitimate
sources of knowledge have been exhausted. This article investigates the
application of biases to the problem of planning, and how this can indi-
rectly induce effective biases in a learning process that is based on a plan-
ner’s experiences. Experimental results from six biased planners, plus
several more complex multi-method planners, indicate complex trade-
offs among planner completeness, planning efficiency, and plan length.
Learning also varies in complex ways among these planners, with one no-
table result being the ease with which some planners learn rules that can
generalize from one object to many; a phenomenon known in machine
learning as generalization to N.
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INTRODUCTION

Bias. as originally defined in the context of inductive concept learning
from preclassified training instances, is “any basis for choosing one gen-
eralization over another, other than strict consistency with the observed
training instances (Mitchell, 1980).”" It has proven to be a particularly
useful notion in this context because it isolates and highlights a crucial
aspect of induction algorithms: the knowledge and processes that de-
termine how the algorithms go bevond the training instances: that is,
which inductive leaps they make. For example, it makes it clear that
explanation-based learning (EBL) can be viewed as inductive concept
learning, where the domain theory and operationality criterion provide
a particularly strong bias on the induction process. In general, the idea
in induction is to start with the notion of an unbiased hypothesis space
that consists of every possible generalization of the observed training in-
stances. The unbiased version space is then the portion of this space that
is consistent with the observed training instances. The bias determines
which element — if any — of the unbiased version space is returned as
the output of the induction algorithm.?

As just described, bias affects the output of the induction process, but
not the efficiency with which it proceeds. This is because bias is implic-
itly used solely as part of the test for a generate-and-test method — first
the elements of the unbiased hypothesis space are generated, and then
tested to see if they meet the criteria of the bias. However, if the bias
can be incorporated directly into the generator (Bennett & Dietterich,
1986), then it can also have a significant impact on the efficiency of the
induction process by reducing the number of candidates that are gener-
ated. In this way, bias can lead to effective control of search. However,
despite this close relationship between search control and bias — as we
shall see later, search control can also lead to bias — the two notions
are not isomorphic. Bias determines which answer is given, while search
control determines the efficiency with which that answer is found.

The principal thesis of this chapter is that the notion of a bias —
suitably generalized — can also be usefully applied to planning. Several

2. In search terms, the set of possible generalizations provides a problem (or solution)
space, consistency with the observed training instances provides a goal test, and
the bias determines which of the states that satisfy the goal is actually reached.




of the potential benefits are straightforward mappings from the inductive
concept learning case: (1) it can help to organize and understand many
of the concepts in planning -- such as linearity and protection - by
focusing on their effects on selection from the hypothesis space (that is.
the plan space): and (2) it can reduce computational effort by reducing
the number of hypotheses (plans) that must be examined if a good bias
is selected.

A third potential benefit, and one that is not derived from the standard
usage of bias in inductive concept learning, is that planning biases can
indirectly induce an effective bias on learning. The basic issne here is how
to make the rules learned from planning episodes more utile than they
would be otherwise. Without such modifications, the rules may actually
hurt performance rather than help it (Minton, 1990; Tambe, Newell,
& Rosenbloom, 1990). In fact, much of the research in plan learning
over the past several years can be construed as investigating the direct
application of biases to improve the utility of learned rules; for example,
ULS (Chase et al., 1989) uses statistical information to abstract learned
rules by dropping conditions that have a high conditional probability
of being true given that the preceding conditions are also true. The
main problem with this type of approach is that it uses the biasing
knowledge only for post hoc revision of the learned rules, and not to
assist the planner in doing its job. Thus an opportunity is missed to
reduce planning effort, and thus to reduce learning time, since learning
time is closely linked to the time required by the planner for it to reach
situations where a rule can be learned. The alternative approach is to
bias the planner — for example, by having it create plans that ignore
preconditions of little statistical relevance —- and then to learn from
these altered planning episodes. Recent evidence shows that, at least
for some forms of abstraction, this approach can reduce planning time
(and thus reduce learning time), and increase the generality and utility
of the rules learned (Unruh & Rosenbloom, 1989; Knoblock, Minton, &
Etzioni, 1991).

In the following three sections of this chapter we lay out in more detail
the application of bias to planning, describe how (biased) planning can
be implemented within Soar (Laird, Newell, & Rosenbloom, 1987; Rosen-
bloom, Laird, & Newell, in press), and provide results from some of the
biases implemented so far. This is followed with an investigation of one




approach to the flexible use of multiple biases within a single planner. by
constructing a set of multi-method planners out of sequences of increas-
ngly less biased planners. Such multi-method planners can alter the
trade-offs among planning efficiency, plan length, and planner complete-
ness. [hey also provide an opportunity to investigate how to learn about
which planners — and thus which biases — to use for particular prob-
lems. The remainder of the chapter examines whether biased planning
can lead to useful biases on learning; in particular. on explanation-based
learning (EBL) of plans. This proceeds via a case study in generaliza-
tion to N (Bostrom, 1990; Cohen, 1988; Shavlik, 1989; Subramanian &
Feldman, 1990).

BIAS IN PLANNING

Figure 1 displays the analogy between inductive concept learning and
planning that underlies the transfer of the noticn of bias to planning. In
both cases the output of the process is to be some element of the unbi-
ased hypothesis space that is consistent with the process’s input. Where
the two cases differ is in the definitions of “unbiased hypothesis space”
and “input”. In concept learning, the unbiased hypothesis space is the
power set of the possible instances, and the input is a set of preclassi-
fied training instances. In planning, the unbiased hypothesis space is
the power sequence — that is, the set of all sequences — of the possible
operators,® and the input is the combination of an initial state and a
goal. In either case — despite these differences — in the absence of a
bias, any element of the hypothesis space consistent with the input (that
is, any element of the version space) is as good as any other. Thus, in
both cases, it is the bias that breaks this deadlock and determines which
such element becomes the output of the process.

Biases can be either absolute or relative. An absolute bias completely
removes regions of the unbiased hypothesis space, creating an incomplete
biased hypothesis space. For example, in concept learning, a generaliza-
tion language provides an absolute bias by eliminating any element of the

3. The specification here assumes that the plan space contains only totally-ordered
sequences of operators, but it does not rule out a search strategy that incrementally
specifies an element of the plan space by refining a partially-ordered plan structure.
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Figure 1. Analogy between concept learning and planning.

unbiased hypothesis space not expressible in the language. Because abso-
lute biases introduce incompleteness into the process, devising a “good”
bias is critical: if it is too weak it has no effect, but if it is too strong it
can eliminate the desired output. A relative bias defines a partial order
on the elements of the hypothesis space. Returning to the concept learn-
ing case, a preference for simpler hypotheses provides a relative bias.
Relative biases do not generate incompleteness, but rules learned from
relative biases tend to be more complex than those learned from absolute
biases, so that the utility of learned rules may be decreased. In the case
of planning, both absolute and relative biases have been used, though
not generally under these labels.

On the absolute side, two common planning biases are linearity and
protection. A linearity bias removes from the hypothesis space all plans
in which operators in service of different unachieved goal conjuncts occur
in succession; that is, once an operator for one unachieved goal conjunct
is in the plan, operators for other conjuncts can occur only after the first
goal conjunct has been achieved. For example, given the initial state
and the goal conjuncts in Figure 2(a), plans such as the one in Fig-
ure 2(b) would be eliminated, while plans such as the one in Figure 2(c)
would remain. A protection bias eliminates all plans in which an op-
erator undoes a goal conjunct established by an earlier operator in the



gl:(OnAB)
g2:(OnCD)
Initial State Goal

(a)

(move B Tabie) —» (move D Table) —» (move AB) —= (move C D)

for gl for g2 for gl for g2

(b)

(move B Table) —» (mave A B) —& (move D Table) —» (move C D)

for gl for ..
©)

Figure 2. Example of the effects of a linearity bias on the plan space: (a) tnitial
state and goal conjuncts, (b) plan eliminated, (¢) plan remaining.

gl: (OnCD)
g2: (OnBC)
mm g3:(On A B)
Initial State Goal
(a)
(move A B) —» (move C D) —» (move A Table) —» (move B C} —» (move A B)
for g3 for gl for g2 for g3
()]

(move C D) —» (move B C}) — (move A B)

for gl for g2 for g3

(©)

Figure 3. Example of the effects of a protection bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.




sequence. For example. given the initial state and the goal conjuncts in
Figure 3(a). plans such as the one in Figure 3(b) would be elimina: -
since the operator (move \ Table) undoes the goal conjunct (On A B)
which is established by the earlier operator (move A B). while plans such
as the one in Figure 3(c) would remain.

Two less common. but nonetheless interesting, absolute biases are di-
rectness and nonrecursiveness. A directness bias eliminates all plans in
which there is at least one operator that does not directly achieve a
goal conjunct included in the problem definition. For example. given
the goal conjuncts and operators in Figure 4(a). plans such as the one
in Figure 4(b) would be eliminated since the operator (move B A) does
not directly achieve any of the goal conjuncts in the problem definition.
while plans such as the one in Figure (c) would remain. A nonrecur-
siveness bias eliminates all plans that require a derivation embodying
recursive subgoals. For example, given the goal conjuncts and operators
in Figure 5(a). plans such as the one in Figure 3(b) would be eliminated
because it requires a derivation embodying a recursive subgoal — oper-
ator (move B Table) is chosen in service of conjunct (Clear C), but in
making it applicable, a recursive Clear corjunct (Clear B) is generated
(resulting in the selection of (move A D) as the first operator). On the
other hand, plans such as the one in Figure 5(c) would remain.

Because these biases are absolute, they all engender incompleteness in
the planner; that is, they reduce the number of plans that the planner
can possibly generate for particular problems. This incompleteness can
be used to speed up the planner. However, it only really helps if the bias
is an appropriate one; otherwise, the effort expended in searching the bi-
ased space is wasted. Thus, in order to show that using one of these abso-
lute biases is reasonable, some form of appropriate justification is needed.
The most common form of justification is an independence assumption.
Linearity and protection both depend on some form of independence
assumption. For linearity, onc assumes that while solving one goal con-
junct, operators not in service of that conjunct need not be considered.
For protection, one assumes that while solving one goal conjunct, op-
erators that interact negatively with previous goal conjuncts need not
be considered. Other justifications include progress and boundedness. A
progress assumption — that it is always possible to move forward, and
never required to move backward — underlies all greedy biases, of which




A
B gl: {On A Table)

g2: (On B Table)
' g3: (On C Table)
Initial State Goal

(a)

(move A Table) —e (move B A) — (move C Table} — (move B Table)

for g3 for g2

(b)

for gl

{move A Table) —= (move B Table) — (move C Tabie)

for gl for g2 for g3

(c)

Figure 4. Example of the effects of a direciness bias on the plan space: (a) initial
state and goal conjuncts. (b) plan eliminated, (¢) plan remaining.

D) gl: (On A Table)
g2: (Clear C)
Initial State Goal
(a)
{move AD) —» (move B Table) —e (move A Table)
for (Clear B)
for g2 (Clear C) for gl
()]
(move A Table) —® (move B Table)
for gl for g2
(c)

Figure 5. Example of the effects of a nonrecursiveness bias on the plan space:
(a) initial state and goal conjuncts, (b) plan eliminated, (c) plan re-

maining.




protection is one. Boundedness assumptions limit the total effort that
it is reasonable to expend in solving a problem. Nonrecursiveness and
directuess are both justified by boundedness assumptions, though based
on different bounds.

Fach of the absolute biases can also be made into a corresponding
relative bias by just preferring plans that meet the bias to plans that
do not. For example, a relative protection bias would prefer protected
plans to unprotected ones. but still fall back on unprotected ones if
necessary. In addition, there are a number of biases which are most
naturally cast directly in relative terms. Three common relative biases
are abstraction. earliness. and shortness. An abstraction bias prefers
plans that can be generated by locally filling in the gaps in an abstract
plan: an earliness bias prefers plans discovered earlier in the search; and
a shortness bias prefers shorter nlans. The primary justification for those
biases is efficiency. specifically. planning efficiency for abstraction and
carliness and execution efficiency for shortness.

The dichotomy between absolute and relative biases parallels the com-
parable dichotomy in the use of control knowledge. For example, Gratch
and Delong (1990) distinguish between structural and ordering modifi-
cations to control strategies, which amounts to a distinction between the
addition of absolute and relative control knowledge. The two distinctions
are also closely coupled. as imposition of a bias of one type can engender
control of that same type, and vice versa.

LEARNING AND PLANNING IN SOAR

Our investigations of biased planning, and its influence on learning, have
been performed in the context of Soar, an architecture that integrates
basic capabilities for problem-solving, use of knowledge, learning, and
perceptual-motor behavior (Laird, Newell, & Rosenbloom, 1987; Rosen-
bloom et al., 1991). Soar has not traditionally been seen as a planning
architecture, partly because it does not create structures that resem-
ble traditional plans, and partly because its problem-solving approach
does not closely resemble the traditional planning methods. However,
appearances can be deceiving. In this section we first very briefly review
familiar territory, summarizing how learning works in Soar, and then ex-




amine planning in Soar from the perspectives of both plans and planning
methods.

Learning in Soar

Soar learns via a chunking process that creates new rules that can recre-
ate the results of subgoals in relevantly similar future situations (Laird.
Rosenbloom, & Newell, 1986). For each independent result of each sub-
goal it creates a rule that has an action side based on the result, and a
condition side based on a dependency analysis of the subgoal processing
that led to the result. In effect. chunking is much like explanation-based
learning (Rosenbloom & Laird. 1986).

The Soar representation of plans

This is not the place to attempt resolution of the philosophical questions
over what is and is not a plan. However, enough of a working definition
is needed to allow the identification of what structures in Soar act as
plans. Thus, for the purpose of this identification, we will assume the
following ~eneric definition of a plan for a problem (that is, a state and
a goal):

A plan for a problem is a structure that represents the sequence
of actions to be taken for that problem.

This definition captures a number of the important aspects of what it
means for a structure to be a plan: that a plan is a representation of
actions, that the actions in the plan have not yet taken place, and that a
plan is for the solution of some problem (or class of problems). The def-
inition is also neutral on a number of issues for which there is no present
need to take a stance: the way the plan is encoded (whether declaratively
or procedurally, with waat syntax, and with what degree of expressibil-
ity), by whom the plan was created (the agent that is to execute it or
some other other agent), and to whom the plan is representational (to
the agent or to an external analyst). Other aspects ignored by this defi-
nition which may ultimately be of importance are: whether the structure
is operational for control — for example, whether the plan can lead to

10




action in a bounded amount of time or whether something like exponen-
tial theorem proving is required to derive indirect action consequences
— and whether there is a deliberate act of creation or selection of the
plan for the problem.

With this definition of a plan in hand, it is now possible to identifv
the two predominant components that serve as plans in Soar: (1) sets
of instantiated proferences in preference memory! serve as insi.ntiated
plans for active goals; and (2) sets of variabilized control rules in pro-
duction memory serve as generalized plans for classes of potential goals.
To illustrate this. Figure 6(a) contains a generalized plan for the class of
block-stacking problems shown in Figure 6(b). This single-rule general-
ized plan gets instantiated once for each successive triple of blocks in a
desired stack, avoiding the mistake of putting the top block on the sec-
ond block until it is itself already in place on the third block. Figure 6(c)
shows the sequence of steps for a four-block-stacking problem. For each
step it shows the problem state. the conjuncts that have not yet been
achieved, the operators that have been proposed, and the portion of the
instantiated plan — that is, the set of worst preferences — that applies
at that step. Figure 6(d) shows the actual operator sequence this plan
generates.

The reason that Soar does not appear to have plans is that they are
rarely represented as unitary entities. The generalized plan in Figure 6(a)
consists simply of the set — in this case a singleton set — of control rules,
out of what would be the entire set of rules in memory, that are relevant
to the class of problems in Figure 6(b). For other classes of problems,
some of these same rules may be relevant, while others may not be.
Likewise, the instantiated plan in Figure 6(c) cuts an unnatural swath
through Soar’s preference memory. First, it ignores the preferences that
might simultaneously be in preference memory for other goals. Second,
it contains preferences for an entire sequence of decisions, whereas pref-
erence memory focuses on preferences for the currently active decisions;
that is, it would only contain the preference subset for one step at a time.
The instantiated plan is thus assembled dynamically, and through time,
rather than existing as a static unitary structure that can easily be read

4. In contrast to previous versions, in Soar5 — the current major release — tran-
siently retrieved preferences are maintained in a separate preference memory,
tather than in working memory (Laird et al., 1990).
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Goal protection can hold

Want a stack of at least three blocks

Neither of the top two blocks (out of the three) are in position
Both of the top two blocks (out of the three) are clear

An operator is proposed to put the top one on the second one
=2

The operator is worst

(a)

Initial ' Initial on Initial
/ C C C
State State State noEnn

XX}
Goal gl:tOnAB) . Goal gl:(OnARB) Goal gl:(On A B}
g2:(OnB Q) g2:{OnBO) g2:(OnBC)
g3 (OnCD) £3:(OnC D)
- o g4:(OnDE)
(b)
/ 3]
State alefclol _ | [afs] Dl ol
Unachieved {On A B) “(OnAB)  (OnA B)
Goal Conjuncts | (OnBC) :(OnBCQ) :
OnCD) : :
Proposed (move A B) - (move A B) f move A B
Operators {move B8 C) - (move B C) : { )
(move C D) : :
Instantiated (move A B) is worst | (move A B) is worst :
Plan (move B C) is worst . :
(c)

{(moveCD) —e (moveBC) —= (move AB)
d)

Figure 6. Goals, plans, and operator sequences: (a) a generalized plan, (b) the
class of problems for (a), (c) the sequerce of steps for a four-block-
stacking problem, (d) the sequence of operators.
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off by an external observer.

The generalized plan representation combines aspects of three existing
formalisms - linear operator sequences, partiallv-ordered operator se-
quences. and stimulus-response rules — but it also goes beyond them in
several ways. The preference language, in common with linear operator
sequences and stimulus-response rules, has an imperative construct ( best)
that allows relatively direct specification of the next action to perform;:
however, it also goes beyond this to allow, in common with partially-
ordered operator sequences, specification of partial order — using binary
preferences such as worse and better — as well as beyond this to oper-
ator avoidance {worst and reject). The use of control rules, in common
with stimulus-response rules, provides a fine-grained conditionality and
context sensitivity that allows it to easily encode such control structures
as conditionals and loops. In addition, the variabilization of the control
rules allows a single plan fragment to be instantiated for multiple related
decisions.

Planning methods in Soar

At the problem-solving level, Soar is based on the idea of multiple prob-
lem spaces (Newel et al., 1991) — that is, on multiple sets of operators
and states, their selection, and the application of operators to states
to yield new states — and their interaction through goal-subgoal in-
terfaces. Early work on Soar demonstrated how this organization, in
conjunction with small amounts of additional knowledge — structured
as method increments — could yield a wide range of standard problem-
solving methods. Although this included means-ends analysis (MEA) —
the primordial planning method — most of the exhibited methods, such
as depth-first search and hill-climbing, did not resemble classical plan-
ning methods. Thus Soar was conventionally viewed as a c~arch system
rather than as a planning system. However, recent work on a Soar-based
framework for planning has demonstrated how versions of such standard
planning methods as linear, nonlinear,® and abstraction (hierarchical)

5. The term “nonlinear” has several different meanings in the world of plans. The
specific sense intended here is that operators generated in service of different goal
conjuncts can be interleaved.
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planning can be derived by adding method increments that include core
means-ends knowledge about what operators to suggest for considera-
tion, and varying knowledge about how to respond to impasses resulting
from precondition failures {Rosenbloom. Lee, & Unruh, 1990).

Figure 7 provides initial traces of how particular versions of these
three forms of planning proceed, in their current Soar implementation.
for Sussman's anomaly (in the blocks world).® They all start with a
high-level operator that is to achieve the entire conjunctive goal — (On
B C) and {(On A B) — directly from the initial state, and reach an
execution impasse if there is no information about how to do this. In
response to this impasse. a subgoal is created where means-ends analysis
is used to generate the set of candidate operators — (move B C) and
(move A B) — that may be able to achieve any of the goal conjuncts.
A selection impasse then occurs unless there is information about how
to pick among them (or unless only one operator is generated). In this
selection impasse, the alternatives are evaluated by simulating their con-
sequences. The simulation begins by selecting one of the alternatives to
evaluate — here it is (move A B). Its preconditions are tested and if it is
known to be applicable, it is executed. If it is not known to be applica-
ble, what happens next depends on whether or not there is abstraction.
With abstraction, the operator is executed anyway and problem solv-
ing just continues. In Figure 7(c), for example, operator (move A B) is
executed even though block A is not clear. Without abstraction, as in
Figure 7(a) and (b), an execution impasse occurs again. In response to
this impasse, a new set of goal conjuncts is generated from the operator’s
unmet preconditions. '

The difference between linear and nonlinear planning, at least for these
versions, is in how the focus of operator generation shifts from the origi-
nal set to a set including these new ones. Linear planning follows a stack
discipline, where attention shifts completely to these new conjuncts —
(Clear A) in this example — stays with them until they are achieved, and
then pops back to the original conjunct that led to the impasse. Once
the original conjunct is achieved, processing shifts to one of its siblings
@f there are any). Nonlinear planning instead shifts to an expanded set

6. For comparison purpose, we are showing abstraction in the blocks world. Although
we have not actually implemented it in that domain, it has been implemented in
several similar domains.
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of conjuncts that includes the new set plus the original set minus the
conjunct that led to the impasse, vielding (Clear A) and {On B C) in
this example. At any point in time, an operator can be selected for any
of these conjuncts, enabling operator sequences to be interleaved as nec-
essary (similar to the casual-commitment approach to nonlinear planrning
( Veloso, 1989)). For both planning methods, once the new focus has been
determined, planning continues recursively by using means-ends analysis
to generate candidate operators for the new set of goal conjuncts.

Although we have so far been referring to these methods as “plan-
ning methods”. because they are versions of classical methods used in
the creation of plans, nothing has vet been said about how they in fact
vield plans — that is, sets of either instantiated preferences or gener-
alized control rules. Plans — actually plan fragments — are generated
whenever operator preferences are created in working memory. This can
happen simply by the instantiation of a generalized plan fragment —
that is, by the execution of a control rule — or by the returning of a
result from an operator-selection subgoal. For example, in Figure 7(a)
a best preference is returned from the selection subgoal if the result of
evaluating (move A B) is success, whereas a worst preference is returned
if the result is failure. These preferences act directly as fragments of a
plan for the currently active goals. In addition, whenever a preference
is returned as a result of a subgoal, it triggers Soar’s chunking process,
which creates and stores a control rule that acts as a generalized plan
fragment for classes of problems.

Most plan fragments that are not created simply by instantiating gen-
eralized plans are generated from projection (that is, lookahead) episodes
in subgoals. In projection, one or more domain operators are tried out
in simulation to see which ones lead to success or failure. Success en-
genders best preferences and failure engenders worst preferences. Thus
projection plays an integral role in determining which plans are created.
In its turn, what is projected, and what is considered to be success or
failure, is determined by the planning method. These relationships are
summarized by the following two influence paths.

planning method > projection > instantiated plan

planning method > projection > learning > generalized plan
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Wiikin this framework, planning biases are implemented by altering
the planning miethod, which then — through the influence paths above
-- determines which plans are created. For example, a protection bias
is implemented by altering the planning method to terminate lookahead
with failure any time a projected path leads to a protection violation. In
comparison to the same planner without this bias, the protection plan-
ner will lead to the creation of worst preferences (and negative control
rules) which will avoid paths that violate protection. If relative biases
are used. it should also be possible to learn control rules that generate
binary preferences (such as better and worse) encoding partial-order in-
formation, but this has not yet been investigated (at least in the context
of bias and planning).

IMPLEMENTED PLANNING BIASES

The planning biases that we have concentrated on recently are linearity,
protection, directness, and abstraction. The first three have all been im-
plemented as options within a single planning system — and will be the
focus here — while the latter has been implemented separately (Unruh
& Rosenbloom, 1989). The implemented system that combines linearity,
protection, and directness is constructed as a nonlinear planner that can
optionally employ any of several different bias values along two indepen-
dent dimensions — goal flezibility and goal protection. The nonlinear
planner is described in Figure 7(b). It uses means-ends analysis on the
entire set of goal conjuncts to decide which operators to consider for se-
lection, performs search to decide among the set of considered operators.
and generates new goal conjuncts whenever one or more preconditions
of the selected operator are not achieved.

The goal-flexibility dimension is shown in Figure 8. It ranges over the
planner’s degree of flexibility in the pursuit of subgoals for precondition
failures, and subsumes the directness and linearity biases. The most
restricted point along this spectrum disallows all pursuit of subgoals
for precondition failures (Figure 8(a)), yielding a single-level subgoal
hierarchy. That is, if an operator has unsatisfied preconditions when
the attempt is made to incorporate it into a plan, that plan — actually,
any plan incorporating that operator in that role — is rejected. This
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Figure 8. The dimension of goal-flexibility bias.

implements a directness bias because means-ends analysis ensures that
operators are only considered if they achieve a goal conjunct,” and the
only goal conjuncts that are allowed are the ones in the initial problem
specification, so no operators are allowed in the plan except for those
that directly achieve goal conjuncts in the initial problem specification.

The second point along the flexibility dimension allows the local use of
subunals (Figure 8(b)). Here, precondition failures lead to generation of
new goal conjuncts, but only a single local set of conjuncts are attended
to at any point in time. Initially the local set consists of the conjuncts
in the problem specification. However, whenever a selected operator has
one or more unmet preconditions, the previous local set is pushed on
a stack, and the operator’s unmet preconditions become the new local
set. When the operator’s conditions are satisfied, the stack is popped
to return to the previous set. This local focus of attention has two
main consequences for the planner. First, it reduces the branching factor

7. Means-ends analysis in general may not guarantee this, but the restricted form of
MEA typically used by planning systems — where it is based on the unification
of operator actions with goal conjuncts — does guarantee it.
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of the planner’s search — with respect to the nonlinear planner — by
restricting the set of operators that the planner can consider at any point
in time to just those that may achieve the local conjunc <. Second, it
enforces linearity on the resulting plans by restricting the placement of
an operator to within the context of the local conjuncts from which it
arose.

The third point along the flexibility dimension allows the global use
of subgoals; that is, new goal conjuncts are generated for unmet precon-
ditions, and operators are simultaneously considered for all unsatisfied
conjuncts {Figure 8(c)). This is the least restricted version, and enables
nonlinear planning by allowing operators for muitiple goal conjuncts to
be interleaved.

The two points implemented along the goal-protection dimension cor-
respond to full goal protection -— that is, no achieved goal conjunct in
the plan can be violated — and no goal protection. The main conse-
quence of imposing full goal protection is that the search tree is reduced
in size because paths that violate goal protection are cut off before full
plans are created.

Figure 9 characterizes a 3x2 set of planning methods derived from
these bias dimensions. The most biased planner (P1) is at the top-left
corner of the figure. This is a direct goal-protection planner. Although
quite restrictive, it is sufficient to solve the block-stacking problem shown
in that cell of the figure. The least biased planner (P6) is in the bottom-
right corner of the figure. It is a nonlinear planner without goal pro-
tection, and is the only planner in the figure capable of generating an
optimal solution to the blocks world problem shown in that cell.® Be-
tween these two extremes, moving up or to the left yields more bias,
while moving down or to the right yields less bias. In each of these in-
termediate cells, the problem shown is one that is just hard enough to
require that planner; that is, the problem can be solved optimally by the
planner represented by that cell, but not by either the planner to its left
or the planner above it.

_ Tables 1(a-c) show the same 3x2 matrix, but each cell now contains

8. In this domain both P5 and P6 are complete planners in that they can potentially
solve every problem (though P5 may not be able to generate an optimal solution).
However, in domains with irreversible operators, P6 is the only complete planner.
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Figure 9. The planning methods generated by the bias dimensions {the bottom-
left corner represents an extended blocks world problem where a block
that is not clear can be moved, dropping all the blocks above it onto
the table).

experimental results bearing on the trade-offs between efficiency and
completeness for these six planners. These data come from running each
planner on three replications of the same set of fifty blocks-world prob-
lems, for a total of 150 trials each. Problems are repeated to help average
out the variations caused by nondeterminism in the planners — when-
ever they reach a decision at which they are indifferent among the set
of alternatives, one alternative is picked at random. The first ten prob-
lems out of the fifty all involve two blocks and two goal conjuncts. For
each ten subsequent problems the maximum number of blocks and goal
conjuncts were each increased by one (the last ten problems thus have a
maximum of six each). For each problem, an initial state was randomly
generated containing between two and the (current) maximum number
of blocks. Likewise a set of goal conjuncts was randomly generated that
numbered between two and the number of blocks in the initial state.
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Learning was turned on for each problem, but only within-trial transfer
was allowed: that is, rules learned during one problem were not used
for other problems. This provides a generalized form of dependency-
directed backtracking, but does not get into the issues of across-problem
interactions.

Table 1(a) shows the number of problems solvable in principle — that
is, if sufficient time is provided — by that cell’s planner, plus a label for
the problem set that this implicitly defines. Not surprisingly, this shows
a monotonic trend between planner bias and scope, from a low of 28
problems for the most restricted planner to a high of 50 problems for the
least restricted planner. Tables 1(b) and (¢) show the average number of
decisions and the average plan length, which should positively correlate,
respectively, with planning time and execution time. This data arises
from applying each of the six planners to those of the four problem sets
defined in Table 1(a) that they can in principle solve. The four problem
sets are associated with the four rows within each cell of the tables.
The averages in each cell only include the data from the trials that were
solved within an a priori limit of 300 decisions. Since 99% of the solvable
problems were actually solved within this limit, this includes nearly all
of the trials.

The timing results in Table 1(b) show that planning effort is a mono-
tonically decreasing function of the amount of bias along these dimen-
sions. For example, for problem set S1, effort ranged from a low of
16.5 decisions for the no-subgoal (direct) methods to a high of 36.6 de-
cisions for global flexibility (nonlinear planning) without protection. If
this trend holds more broadly across other domains, the resulting trade
off between efficiency and completeness — efficiency decreases as the bias
is relaxed, while completeness increases — implies that context-sensitive
bias selection will be critical for finding solutions quickly across broad
ranges of problem difficulty.

Plan length in Table 1(c) shows a similar monotonic trend, though
there is one reversal when going from linear to nonlinear planning (both
without goal protection). The most likely cause of this reversal is that
the linear planner’s bias is weak enough to allow solutions to be found
for all blocks world problems, but strong enough to eliminate optimal
solutions for some of the problems; for example, when the shortest plan
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Table 1.

No subgoal

Goal
Protection

No
Goal
Protection

Local

Global

{ Directness) (Linear) (Nonlinear)
28 (S1) 15 (S2) [ 16 (S3)
28 (S1) 50 (54) 50 (S4)

{(a) Number of problems solvable in principle.

Goal

Protection

No
Goal
Protection

S1
52
S3
S4
S1
52
S3
54

{b) Average

Goal
Protection

No
Goal
Protection

St
S2
S3
S4
S1
S2
S3
S4

No subgoal Local Global
(Directness) (Linear) {Nonlinear)
16.5 17.2 17.5

- 28.9 36.4
- - 364
16.5 23.2 36.6
- 38.8 50.7
- 43.4 54.5
- 45.1 58.0

number of decisions per problem solved.

No subgoal Local Global
{Directness) (Linear) (Nonlinear)
1.7 1.8 1.8

- 2.8 3.0
- - 3.0
1.7 2.3 2.5
- 3.7 3.6
- 4.1 4.0
- 4.3 4.1

(c¢) Average plan length per problem solved.

randomly generated blocks world problems.
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requires operators in service of different goal conjuncts to be considered
before the current goal conjunct is achieved.

MULTI-METHOD PLANNERS

Tlie ideal planner would be able to solve each problem witii a minimum
of excess work (at both plauning and execution time). However, each
of the planners examined in the previous section is eithe: incomplete or
performs a significant amount of excess work for some of the problems.
Given this. an alternative way to approach the ideal is to construct a
multi-method planner that uses, for each problem, the least costly plan-
ner that is sufficient for it. Toward this end we have created a set of
multi-method planners, each consisting of a sequence of primitive plan-
ners. For each multi-method planner, planning starts with the most
restricted planner, and falls back on failure to successively more relaxed
planners until one is found that is sufficient for the problem. The general
approach is similar to how multiple biases have been used in inductive
concept formation (Rendell, 1986; Russell & Grosof, 1987; Utgoff, 1986),
how preservable constraints are relaxed on failure in FAILSAFE-2 (Bhat-
nagar & Mostow, 1990), and how rejection {absolute) biasas are weak-
ened in (M. Barley, personal communication, 1991); however, there are
a number of differences in the details, such as which biases are used, how
it is decided to weaken the biases. how much the biases are weakened at
one time, etc.

Multi-method planners are implemented via a bias space containing
operators that set the bias. Without knowledge about which biases work
for a problem, a lookahead search is performed in which the biases are
tried out in the sequence specified — in essence the system is projecting
on the bias as well as on the domain operators. As soon as a bias is
found that works for the problem, the lookahead search is terminated,
and that bias is applied in actually solving the problem. Figure 10 shows
a trace of multi-method planning for a sequence of three planners: (1)
the most restricted planner, P1 (direct goal-protection); (2) an interme-
diate planner, P3 (nonlinear goal-protection); and (3) the least restricted
planner, P6 (nonlinear no-protection). The planner starts by evaluating
the planning methods. In the case of Sussman’s anomaiy, as shown in
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Figure 10. A trace of multi-method planning.

the example, the evaluation of the direct goal-protection method returns
failure because the goal conjunct (On A B) cannot be achieved without
generating a new subgoal. Once a method fails, the next most relaxed
method — in this example it is the nonlinear goal-protection method —
is tried, and so on, until a solution is found.

Table 2 compares the performance of the two single-method planners
that are complete for this domain — the linear no-protection planner
(P5) and the nonlinear no-protection planner (P6) — versus four multi-
method planners. Since all of the multi-method planners in this table

“contain a complete single-method planner, they are also complete. For
each of these six complete planners, the table shows the sequence of
primitive planners out of which it is composed, the average number of
problems that it actually solved within 300 decisions (averaged over the
same set of 150 trials as in the previous section), the average number of
decisions for the solved problems, and the average plan length for the
solved problems. To aid in comparing the methods, the parenthetical
numbers in the last two columns provide the same data .ur the 43 prob-
lems that all six methods solved on all three repetitions. The results on
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Average
number of | Average
problems | number of |  Average
Planning type solved decisions | plan length
Single-method | P5 48.7 43.1(32.3) | 4.3(3.3)
Planning P6 48.7 38.0 (44.6) | 4.1(3.2)
Pl-P5 18.3 143 (379) | 3.5 (2.8) |
Multi-method | P1 - P6 8.7 58.5 (46.4) | 3.8 (3.0)
Planning P1-P2-P5 16.7 43.3 (40.7 3.0 (2.8)
P1-P3-Pé6 17.7 53.3 (46.1) 3.1(2.7)

|

Table 2. Single-method versus multi-method planning.

these common problems reveal a monotonic trend whereby adding more
planners marginally increases planning time, in exchange for reductions
in plan length. In general the linear planners were quicker than the
nonlinear planners, while there was no strong pattern for plan lengths.

Ideally the multi-method planners would not only have produced shorter

plans, but would also have taken less time to do so. The idea is that prob-
lems solvable by more restricted planners should be solved more quickly,
while problems requiring less restricted planners should not waste too
much extra time trying out the insufficient early planners. The intuition
behind this is based on iterative deepening (Korf, 1985). In iterative
deepening, a sequence of depth-first searches are performed, each to a
greater depth than the previous one. If a solution is found at a shallow
depth, the cost of searching to a greater depth is saved. If a solution
is not found at a particular depth, a deeper search is performed. The
cost of doing the shallower searches is then wasted, but since the deeper
search costs at least B times the cost of the shallower search — where
B is the branching factor of the search tree — this cost can be relatively
quite small. Thus, if the proportion of problems solvable at shallow
depths is large enough, and the ratio of costs for successive levels is large
enough, there should be a net gain. However, the results in Table 2 show
that, at least for these methods and problems, these assumptions are not
met. The planning-time balance is instead in favor of the single-method
approaches.
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Figure 11. Example of learning which planners to use for which classes of prob-
lems: (a) a learned rule to avoid the direct goal-protection planner,
{b)} a class of problems in which this rule is applicable.

One way to further ameliorate the effects of wasting effort on insuffi-
cient planners is to use learning, in particular of two sorts. The first sort
of learning is about which planners to use for which classes of problems.
To the extent that this can be done, the effort wasted in trying inade
quate methods can be avoided. In our Soar-based implementation, bias
selection is structured just as would be any other selection, so this sort
of learning can happen automatically by chunking. From an experiment
with such learning, Figure 11 shows a rule learned to avoid using the
most restricted method — that is, direct goal-protection — under spe-
cific circumstances where there is only one goal conjunct but (at least)
two blocks must be moved to achieve it. This rule was learned during
the first problem and used in three later problems to avoid even trying
this method.

The second sort of learning is within-planner learning that can trans-
fer across planners (possibly for the same problem). If a projection is
performed within one planner, and the results of the projection depend
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only on aspects of the planner that are shared by a second planner, then
it should not be necessary to repeat that projection when the second
planner is tried. For example, the rule in Figure 6(a) is learned from a
plan violating goal protection in the direct goal-protection planner and
transfers to the nonlinear goal-protection planner, where it prevents the
planner from reprojecting along paths that violate goal protection.

Though we have examined instances of both of these torms of learning
in the context of multi-method planning, no systematic study has yet
been made of their effectiveness or of whether issues of overgeneralization
and/or undergeneralization will prove troublesome. Future work should
include rerunning the experiments summarized in Table 2 with both of
these forms of learning enabled.

Another potential way to improve the performance of multi-method
planners is to reduce the granularity at which the individual planning
methods are selected and used. If there are a significant number of
problems where most of the subgoals are solvable by a very cheap method
{such as directness) while the remainder of the problem requires a more
complex method (such as linear planning), then making an independent
bias selection each time the planner recurs on a set of subgoals may
allow focused reductions in planning time and plan length. There would
be increased overhead because of the extra decisions, but that may be
more than compensated for by the use of simpler methods. This is all
quite speculative for now, but does provide an interesting future area for
investigation.

BIAS IN EXPLANATION-BASED LEARNING

As defined in the introduction, the bias in concept learning is anything
other than strict consistency with the observed training instances that
influences which generalization is chosen. Thus, when an explanation-
based method is used for concept learning, its bias includes the entire set
of inputs exclusive of the training example — that is, the domain the-
ory, the goal concept, and the operationality criterion (Mitchell, Keller,
& Kedar-Cabelli, 1986) — plus any other factors that influence which ex-
planation is used and which definition/rule is extracted from the explana-
tion. Each of these factors has been varied in at least one recent research
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effort in service of increasing the utility of the rules acquired by EBL:
restrictions on domain theory expressiveness (Tambe, Newell. & Rosen-
bloom. 1990):° variations in target (goal) concepts for acquiring control
knowledge ( Minton et al., 1989); variations in the operationality criterion
(Braverman & Russell, 1988: Letovsky. 1990: Segre, 1987): explanation
selection based on criteria such as coverage or (nonjrecursiveness (Co-
hen, 1990; Etzioni, 1990); and postprocessing via a range of deductive
and inductive transformations (Chase et al., 1989; Cohen, 1990; Flann
& Dietterich, 1989: Minton. 1988: Shavlik, 1989).

In the framework of this chapter, explanation-based learning of plans
is performed over the planner’s projection process: the elements to be
explained are the preferences generated during projection, and the ex-
planations are the traces of the projections that led to the preferences.
Thus, if the planner’s bias is reflected in an altered planning method,
which in turn yields an altered projector, then the planner’s bias can in-
directly induce a bias in the resulting EBL process. Directness provides
a simple example of this. Figure 12(a) shows a path projected without
directness, by the nonlinear planner, for a simple four-block-unstacking
problem. This projection proceeds through multiple selection impasses
until the problem is successfully solved. As shown in Figure 12(b), this
results in a pair of positive control rules, one for each correct decision
on the solution path. These rules are relatively specialized, because each
must encapsulate the entire explanation for why a particular operator
will eventually lead to success. In larger problems these explanations
get even larger, and the rules end up being even more specialized. Fig-
ure 13(a) shows a path projected with directness, for the same block-
unstacking problem. In contrast to the previous case, this projection
is terminated with failure as soon as the non-applicable operator (move
B Table) is selected. The explanation for this failure is quite short —
based as it is on the explicit assumption that directness can hold and
on the failure of the first selected operator to be applicable — yielding
the negative control rule in Figure 13(b). As it turns out, this single
rule is general enough to handle the entire problem, by removing from

9. The use of “low belief” or “overgeneral” domain theories for knowledge level learn-
ing is another {orm of domain theory variation that provides a qualitative improve-
ment in utility — from symbol level learning to knowledge level learning (Flann
& Dietterich, 1989; Rosenbloom & Aasman, 1990).
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Figure 12. Four block unstacking with nonlinear planning: (a) a projected path,
(b) learned rules.
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Figure 13. Four block unstacking with directness: (a) a projected path, (b) a
learned rule.

consideration all operators that attempt to move unclear blocks onto the
table. The bias in this case has thus yielded faster planning and learning
— because of shorter projections and explanations — and has resulted
in the acquisition of fewer, more general rules.

- Implicit in this example is one approach to producing generalization
to N (Bostrém, 1990; Cohen, 1988; Shavlik, 1989; Subramanian & Feld-
man, 1990), where a plan learned for a problem of a particular size can
transfer to solve problems with the same structure but of arbitrary size.
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Figure 14. Four block stacking with protection: (a) a projected path, (b) a
learned rule. '

Without directness, the control rules are specific to particular numbers
of blocks, and thus can only be used to directly solve terminal subregions
of larger problems. However, with directness, a single rule is learned that
removes from consideration at each decision all operators that move un-
clear blocks to the table, no matter how many unclear blocks there are.
This idea can be applied to other problems and biases as well. Fig-
ure 14(a), for example, shows a path projected with protection for a
four-block-stacking problem. As with the directness bias in block un-
stacking, a protection bias leads here to learning a single negative rule
(Figure 14(b)) that can be applied to stacking problems of arbitrary size.
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A third type of bias that can also induce generalization to N is com-
plete protection. Complete protection is a variant on goal protection that
provides a very strong bias by not only protecting established goals, but
also protecting established operator sequences. That is, it disallows any
backtracking on operator selection. thus letting projection be terminated
with success whenever an operator is selected, rather than waiting until
the entire problem has been solved. As with the directness example.
projection is terminated here after the first operator is selected (Fig-
ure 15(a)). However, in this case it is terminated with success as soon
as the top block is moved to the table. The explanation for this success
depends only on the explicit assumption of complete protection and on
the fact that the operator was successfully applied, so a relatively gen-
eral. positive control .ule is learned (Figure 15(b)). Although this is a
positive rule, it also turns out to produce generalization to N, but now
by always specifying that the one clear block that is not already on the
table — if it were already on the table, there would be no active goal
conjunct for it — should be moved to the table. The resulting rule can
transfer to any number of iterations, as shown in Figure 15(c).

The key to producing generalization to N with these biases is that they
enable learning from non-iterative paths — in this way it is similar to
Etzioni’s (1990) work on restricting EBL to learn from only non-recursive
paths. In the directness and protection cases, the success paths are
iterative, but (negative) rules can instead be learned from non-iterative
failure paths. In the complete-protection case, learning occurs from a
fragment of the success path that corresponds to just a single cycle of
iteration. In both cases, the resulting rules can transfer to any number
of iterations. )

An even closer relationship to Etzioni’s work could potentially be
achieved by adding a nonrecursiveness bias to the planner. If this were
added as an absolute bias, it would terminate projection with failure
along any path that recurred. This would restrict learning to nonre-
cursive portions of projections, but would also go seriously beyond this
to eliminate recursive plans from the space. Etzioni dealt with this by
distinguishing those projections used for learning from those used for
planning, and then only using the bias during learning. An alternative
approach is to weaken nonrecursiveness by making it a relative bias. If
all of the nonrecursive paths are projected without yielding enough pref-
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erences to generate an unambiguous plan, then it should still be possible
to go back and project along the recursive paths. The result should
he an overall preference for nonrecursive plans. and for recursive plans
learned from nonrecursive projections. over recursive plans learned from
rect:~sive projections. Investigating such a relative nonrecursiveness bias
in the Soar-based planner is an interesting possibility for future work.

Another example of engendering a useful bias on EBL by biasing the
planning can be found in the work on learning from abstract planning
{(Unruh & Rosenbloom, 1989; Knoblock, Minton, & Etzioni, 1991). In
this work, projections are performed with abstracted operator definitions
rather than with the full operator definitions. The resulting abstract
projections tend to be shorter and simpler than would be the comparable
projections with unabstracted operators; so when rules are learned from
these projections, they also tend to be shorter and simpler, and thus
more general.

Given the evidence that planning biases can induce interesting and
useful biases in EBL, and that in so doing the biases can assist both plan-
ning and learning, it is an interesting question to ask whether any other
approaches to biasing EBL — such as ~~<t-hoc rule modification — are
needed. Although it is premature to answer this question at this point,
it is worth noting that the ultimate answer will depend on the scope
of learning biases that can be generated in this fashion, and whether
achievement of these learning biases requires distorting the planner to
such an extent that it cannot properly achieve its task.

CONCLUSION

In this chapter we have taken seriously the notion of bias as a means
of characterizing variations among planners. We hypothesized that this
would yield three benefits: (1) help organize and understand many of
the concepts in planning; (2) reduce the computational requirements
of planning; and (3) induce effective biases in learning. On the first
benefit, though it has not yet led to a complete theory or taxonomy of
planning methods, it has led to the development of several orthogonal
bias dimensions which provide fragments of organization over the space
of methods. Six planners — defined by the cross-product of two bias
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dimensions — have been implemented in Soar as variations on a single
core planner. Further work is - ired to identify the remaining biases
that underlie effective planning metl.ods. and to build a unified planner
that can optionally use arbitrary subsets of them.

On the second benefit, initial experimen.s with the six planners sug-
gest (mostly) monotonic trade-offs between completeness and efficiency
as the bias dimensions are traversed from least to most restrictive. In an
attempt to move »ff of this trade-off curve, a set of multi-method plan-
ners were constructed from sequences of increasingly less biased planners.
When the correct planner is not known a priori, a search is performed
starting at the most restricted planner until a sufficient one is found. An
experiment comparing these multi-method planners with the two com-
plete single-method planners in the blocks world provided mixed results:
reduced plan length no longer needed to be sacrificed for completeness,
but reductions in plan length were accomnanied by increases in planning
time. Two learning strategies were preser . ‘d as potential ways of further
reducing the planning time required by the multi-method planners: ac-
quisition of control rules that transfer among planners, enabling searches
with more restricted planners to assist search with less restricted ones;
and acquisition of rules that help select appropriate planners. These pos-
sibilities need to be investigated further, in conjunction with a deeper
understanding of the entire set of trade-offs and experimentation in more
realistic task domains. In addition, the idea of allowing a new method
to be selected whenever the planner recurs on a new set of subgoals also
needs to be examined.

On the third benefit, the effects of changes in planning bias on bias in
explanation-based learning were investigated with a case study in gen-
eralization to N. Depending on the exact biases used, control rules were
learned that either: (1) did not provide generalization to N (for nonlinear
planning), provided it by eliminating all but the correct iterative option
(for goal protection and directness), or provided it directly by specifying
the correct iterative option (for complete protection). Although this is
encouraging, considerable future work is still needed in evaluating the
impact of the full span of planning biases on learning, and evaluating
whether this provides a sufficient set of biases on learning,.
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